Kin selection and the evolution of plant reproductive traits

Author:

Bawa Kamaljit S.12

Affiliation:

1. Department of Biology, University of Massachusetts, Boston, MA 02125-3393, USA

2. Ashoka Trust for Research in Ecology and the Environment, Bangalore, Karnataka 560064, India

Abstract

Competition among developing seeds and sibling rivalry within multiovulated ovaries can be deleterious for both the maternal parent and the siblings. Increased genetic relatedness of seeds within the ovary may foster kin selection and reduce the deleterious consequences of sibling competition. The pollen parent may also be selected for siring all progeny within a fruit. I propose a series of hypotheses to explain the evolution of a number of reproductive traits in angiosperms in the context of kin selection and sibling rivalry within the ovaries of angiosperms. I present evidence to show that a single-pollen parent, indeed, often sires seeds within multiovulated ovaries. Various types of pollen aggregations and transfer of such pollen masses to the stigmas of flowers by specialized pollinators make this increased genetic relatedness possible. An alternative mode to reduce sibling rivalry may be the reduction of ovule number to one, an evolutionary trend that has independently occurred many times in flowering plants. Finally, I build on previously established correlations to predict two sets of correlations among reproductive traits. In the first case, large showy flowers, transfer of pollen en masse by specialized pollinators, and multiovulated ovaries and multisided fruits seem to be correlated. In the second case, the previously established correlations among small and inconspicuous flowers, pollination by wind, water or generalist insects, flowers and fruits with few or single ovules and seeds, respectively, may also include monoecy or dioecy. Although correlations among many of these traits have been established in the past, I invoke kin selection and sibling competition to explain the evolution of correlated traits as two distinct evolutionary pathways in angiosperms.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3