Flying shells: historical dispersal of marine snails across Central America

Author:

Miura Osamu12,Torchin Mark E.1,Bermingham Eldredge1,Jacobs David K.3,Hechinger Ryan F.4

Affiliation:

1. Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama

2. Division of Marine Biotechnology, Oceanography Section, Science Research Centre, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan

3. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA

4. Marine Science Institute and Department of Ecology, Evolution and Marine Biology University of California, Santa Barbara, CA 93106, USA

Abstract

The geological rise of the Central American Isthmus separated the Pacific and the Atlantic oceans about 3 Ma, creating a formidable barrier to dispersal for marine species. However, similar to Simpson's proposal that terrestrial species can ‘win sweepstakes routes’—whereby highly improbable dispersal events result in colonization across geographical barriers—marine species may also breach land barriers given enough time. To test this hypothesis, we asked whether intertidal marine snails have crossed Central America to successfully establish in new ocean basins. We used a mitochondrial DNA genetic comparison of sister snails ( Cerithideopsis spp.) separated by the rise of the Isthmus. Genetic variation in these snails revealed evidence of at least two successful dispersal events between the Pacific and the Atlantic after the final closure of the Isthmus. A combination of ancestral area analyses and molecular dating techniques indicated that dispersal from the Pacific to the Atlantic occurred about 750 000 years ago and that dispersal in the opposite direction occurred about 72 000 years ago. The geographical distribution of haplotypes and published field evidence further suggest that migratory shorebirds transported the snails across Central America at the Isthmus of Tehuantepec in southern Mexico. Migratory birds could disperse other intertidal invertebrates this way, suggesting the Central American Isthmus may not be as impassable for marine species as previously assumed.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference55 articles.

1. The Great American Schism: Divergence of Marine Organisms After the Rise of the Central American Isthmus

2. Mammals and land bridges;Simpson G.;J. Wash. Acad. Sci.,1940

3. Probabilities of dispersal in geologic time;Simpson G.;Bull. Am. Mus. Nat. Hist. NY.,1952

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3