Time-variant species pools shape competitive dynamics and biodiversity–ecosystem function relationships

Author:

Armitage David W.12ORCID

Affiliation:

1. Department of Integrative Biology, University of California Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720-3140, USA

2. Department of Biological Sciences, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, USA

Abstract

Biodiversity–ecosystem function (BEF) experiments routinely employ common garden designs, drawing samples from a local biota. The communities from which taxa are sampled may not, however, be at equilibrium. To test for temporal changes in BEF relationships, I assembled the pools of aquatic bacterial strains isolated at different time points from leaves on the pitcher plant Darlingtonia californica in order to evaluate the strength, direction and drivers of the BEF relationship across a natural host-associated successional gradient. I constructed experimental communities using bacterial isolates from each time point and measured their respiration rates and competitive interactions. Communities assembled from mid-successional species pools showed the strongest positive relationships between community richness and respiration rates, driven primarily by linear additivity among isolates. Diffuse competition was common among all communities but greatest within mid-successional isolates. These results demonstrate the dependence of the BEF relationship on the temporal dynamics of the local species pool, implying that ecosystems may respond differently to the addition or removal of taxa at different points in time during succession.

Funder

Division of Environmental Biology

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3