A place for everything and everything in its place: spatial organization of individuals on nests of the primitively eusocial wasp Ropalidia marginata

Author:

Sharma Nitika1ORCID,Gadagkar Raghavendra1ORCID

Affiliation:

1. Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, Karnataka, India

Abstract

Non-random space use is common among animals across taxa and habitats. Social insects often use space non-randomly, outside as well as inside their nests. While such non-random space use outside the nest may improve foraging efficiency, inside the nest, it is often associated with the efficient division of labour. Non-random space use by adults on their nests has been hypothesized to result from dyadic dominance interactions, non-random distribution of tasks, differential activity levels, workers avoiding their queens or prophylactic avoidance of disease spread. These hypotheses are generally derived from species in which the tasks of the workers are themselves non-randomly distributed on the nest. Here, we study the primitively eusocial wasp Ropalidia marginata , in which tasks are not distributed non-randomly, and show that 62.4% ± 16.2% of the adults nevertheless use space on their nest non-randomly. In this species, we find that non-random space use may help optimizing nutritional exchange between individuals while prophylactically minimizing disease spread among nest-mates. We did not find evidence for the roles of dominance interactions, activity levels or location of larvae in non-random space use. Spatial organization appears to be a mechanism of minimizing the costs and maximizing the benefits of social life.

Funder

Council of Scientific and Industrial Research

Science and Engineering Research Board

DST-FIST

DST- Year of Science

DBT-IISc partnership program

Ministry of Environment, Forest and Climate Change

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3