The evolution of sensitive periods in a model of incremental development

Author:

Panchanathan Karthik1,Frankenhuis Willem E.2

Affiliation:

1. Department of Anthropology, University of Missouri, 107 Swallow Hall, Columbia, MO 65211-1440, USA

2. Behavioural Science Institute, Radboud University Nijmegen, Montessorilaan 3, PO Box 9104, Nijmegen, 6500 HE, The Netherlands

Abstract

Sensitive periods, in which experience shapes phenotypic development to a larger extent than other periods, are widespread in nature. Despite a recent focus on neural–physiological explanation, few formal models have examined the evolutionary selection pressures that result in developmental mechanisms that produce sensitive periods. Here, we present such a model. We model development as a specialization process during which individuals incrementally adapt to local environmental conditions, while receiving a constant stream of cost-free, imperfect cues to the environmental state. We compute optimal developmental programmes across a range of ecological conditions and use these programmes to simulate developmental trajectories and obtain distributions of mature phenotypes. We highlight four main results. First, matching the empirical record, sensitive periods often result from experience or from a combination of age and experience, but rarely from age alone. Second, individual differences in sensitive periods emerge as a result of stochasticity in cues: individuals who obtain more consistent cue sets lose their plasticity at faster rates. Third, in some cases, experience shapes phenotypes only at a later life stage (lagged effects). Fourth, individuals might perseverate along developmental trajectories despite accumulating evidence suggesting the alternate trajectory is more likely to match the ecology.

Funder

Netherlands Organization for Scientific Research

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3