The Opiliones tree of life: shedding light on harvestmen relationships through transcriptomics

Author:

Fernández Rosa1ORCID,Sharma Prashant P.2,Tourinho Ana Lúcia13,Giribet Gonzalo1ORCID

Affiliation:

1. Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA

2. Department of Zoology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA

3. Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade (CBIO), Avenida André Araújo, 2936, Aleixo, CEP 69011-970, Manaus, Amazonas, Brazil

Abstract

Opiliones are iconic arachnids with a Palaeozoic origin and a diversity that reflects ancient biogeographic patterns dating back at least to the times of Pangea. Owing to interest in harvestman diversity, evolution and biogeography, their relationships have been thoroughly studied using morphology and PCR-based Sanger approaches to infer their systematic relationships. More recently, two studies utilized transcriptomics-based phylogenomics to explore their basal relationships and diversification, but sampling was limiting for understanding deep evolutionary patterns, as they lacked good taxon representation at the family level. Here, we analysed a set of the 14 existing transcriptomes with 40 additional ones generated for this study, representing approximately 80% of the extant familial diversity in Opiliones. Our phylogenetic analyses, including a set of data matrices with different gene occupancy and evolutionary rates, and using a multitude of methods correcting for a diversity of factors affecting phylogenomic data matrices, provide a robust and stable Opiliones tree of life, where most families and higher taxa are precisely placed. Our dating analyses using alternative calibration points, methods and analytical parameters provide well-resolved old divergences, consistent with ancient regionalization in Pangea in some groups, and Pangean vicariance in others. The integration of state-of-the-art molecular techniques and analyses, together with the broadest taxonomic sampling to date presented in a phylogenomic study of harvestmen, provide new insights into harvestmen interrelationships, as well as an overview of the general biogeographic patterns of this ancient arthropod group.

Funder

NSF

National Geographic

International Postdoctoral

Reserva Ducke

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3