Reproductive competence: a recurrent logic module in eukaryotic development

Author:

Noble Luke M.1,Andrianopoulos Alex1

Affiliation:

1. Department of Genetics, University of Melbourne, Victoria 3010, Australia

Abstract

Developmental competence is the ability to differentiate in response to an appropriate stimulus, as first elaborated by Waddington in relation to organs and tissues. Competence thresholds operate at all levels of biological systems from the molecular (e.g. the cell cycle) to the ontological (e.g. metamorphosis and reproduction). Reproductive competence, an organismal process, is well studied in mammals (sexual maturity) and plants (vegetative phase change), though far less than later stages of terminal differentiation. The phenomenon has also been documented in multiple species of multicellular fungi, mostly in early, disparate literature, providing a clear example of physiological differentiation in the absence of morphological change. This review brings together data on reproductive competence in Ascomycete fungi, particularly the model filamentous fungus Aspergillus nidulans , contrasting mechanisms within Unikonts and plants. We posit reproductive competence is an elementary logic module necessary for coordinated development of multicellular organisms or functional units. This includes unitary multicellular life as well as colonial species both unicellular and multicellular (e.g. social insects such as ants). We discuss adaptive hypotheses for developmental and reproductive competence systems and suggest experimental work to address the evolutionary origins, generality and genetic basis of competence in the fungal kingdom.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference128 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3