First macrobiota biomineralization was environmentally triggered

Author:

Wood Rachel1ORCID,Ivantsov Andrey Yu2,Zhuravlev Andrey Yu34ORCID

Affiliation:

1. School of GeoSciences, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK

2. Borissiak Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow 117997, Russia

3. Department of Biological Evolution, Faculty of Biology, Lomonosov Moscow State University, Leninskie gory 1(12), Moscow 119234, Russia

4. Geological Institute, Russian Academy of Sciences, Pyzhevskiy per. 7, Moscow 119017, Russia

Abstract

Why large and diverse skeletons first appeared ca 550 Ma is not well understood. Many Ediacaran skeletal biota show evidence of flexibility, and bear notably thin skeletal walls with simple, non-hierarchical microstructures of either aragonite or high-Mg calcite. We present evidence that the earliest skeletal macrobiota, found only in carbonate rocks, had close soft-bodied counterparts hosted in contemporary clastic rocks. This includes the calcareous discoidal fossil Suvorovella, similar to holdfasts of Ediacaran biota taxa previously known only as casts and moulds, as well as tubular and vase-shaped fossils. In sum, these probably represent taxa of diverse affinity including unicellular eukaryotes, total group cnidarians and problematica. Our findings support the assertion that the calcification was an independent and derived feature that appeared in diverse groups where an organic scaffold was the primitive character, which provided the framework for interactions between the extracellular matrix and mineral ions. We conclude that such skeletons may have been acquired with relative ease in the highly saturated, high alkalinity carbonate settings of the Ediacaran, where carbonate polymorph was further controlled by seawater chemistry. The trigger for Ediacaran biomineralization may have been either changing seawater Mg/Ca and/or increasing oxygen levels. By the Early Cambrian, however, biomineralization styles and the range of biominerals had significantly diversified, perhaps as an escalating defensive response to increasing predation pressure. Indeed skeletal hardparts had appeared in clastic settings by Cambrian Stage 1, suggesting independence from ambient seawater chemistry where genetic and molecular mechanisms controlled biomineralization and mineralogy had become evolutionarily constrained.

Funder

University of Edinburgh

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3