Evidence of taxon cycles in an Indo-Pacific passerine bird radiation (Aves: Pachycephala )

Author:

Jønsson Knud Andreas123,Irestedt Martin4,Christidis Les5,Clegg Sonya M.6,Holt Ben G.2,Fjeldså Jon1

Affiliation:

1. Center for Macroecology, Evolution and Climate at the Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark

2. Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK

3. Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

4. Department of Biodiversity Informatics and Genetics, Swedish Museum of Natural History, PO Box 50007, Stockholm 104 05, Sweden

5. National Marine Science Centre, Southern Cross University, Coffs Harbour, New South Wales 2450, Australia

6. Environmental Futures Centre and Griffith School of Environment, Griffith University, Gold Coast Campus, Queensland 4222, Australia

Abstract

Many insular taxa possess extraordinary abilities to disperse but may differ in their abilities to diversify and compete. While some taxa are widespread across archipelagos, others have disjunct (relictual) populations. These types of taxa, exemplified in the literature by selections of unrelated taxa, have been interpreted as representing a continuum of expansions and contractions (i.e. taxon cycles). Here, we use molecular data of 35 out of 40 species of the avian genus Pachycephala (including 54 out of 66 taxa in Pachycephala pectoralis ( sensu lato ), to assess the spatio-temporal evolution of the group. We also include data on species distributions, morphology, habitat and elevational ranges to test a number of predictions associated with the taxon-cycle hypothesis. We demonstrate that relictual species persist on the largest and highest islands across the Indo-Pacific, whereas recent archipelago expansions resulted in colonization of all islands in a region. For co-occurring island taxa, the earliest colonists generally inhabit the interior and highest parts of an island, with little spatial overlap with later colonists. Collectively, our data support the idea that taxa continuously pass through phases of expansions and contractions (i.e. taxon cycles).

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3