Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology

Author:

Wolff Jonas O.1ORCID,van der Meijden Arie2,Herberstein Marie E.1

Affiliation:

1. Behavioural Ecology, Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia

2. CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, No. 7, 4485-661 Vairão, Vila do Conde, Portugal

Abstract

Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural ‘printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures.

Funder

Macquarie University

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference33 articles.

1. Animal Architecture

2. THE EVOLUTION OF SPIDER WEBS

3. Bau und Funktion der Spinndrüsen der Araneida [Structure and function of the silk glands of the Araneida];Apstein C;Arch. Naturg.,1889

4. Comparative Structure and Histochemistry of Silk-Producing Organs in Arachnids

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3