Brood parasitism selects for no defence in a cuckoo host

Author:

Krüger Oliver12

Affiliation:

1. Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK

2. Department of Animal Behaviour, University of Bielefeld, PO Box 10 01 31, 33501 Bielefeld, Germany

Abstract

In coevolutionary arms races, like between cuckoos and their hosts, it is easy to understand why the host is under selection favouring anti-parasitism behaviour, such as egg rejection, which can lead to parasites evolving remarkable adaptations to ‘trick’ their host, such as mimetic eggs. But what about cases where the cuckoo egg is not mimetic and where the host does not act against it? Classically, such apparently non-adaptive behaviour is put down to evolutionary lag: given enough time, egg mimicry and parasite avoidance strategies will evolve. An alternative is that absence of egg mimicry and of anti-parasite behaviour is stable. Such stability is at first sight highly paradoxical. I show, using both field and experimental data to parametrize a simulation model, that the absence of defence behaviour by Cape bulbuls ( Pycnonotus capensis ) against parasitic eggs of the Jacobin cuckoo ( Clamator jacobinus ) is optimal behaviour. The cuckoo has evolved massive eggs (double the size of bulbul eggs) with thick shells, making it very hard or impossible for the host to eject the cuckoo egg. The host could still avoid brood parasitism by nest desertion. However, higher predation and parasitism risks later in the season makes desertion more costly than accepting the cuckoo egg, a strategy aided by the fact that many cuckoo eggs are incorrectly timed, so do not hatch in time and hence do not reduce host fitness to zero. Selection will therefore prevent the continuation of any coevolutionary arms race. Non-mimetic eggs and absence of defence strategies against cuckoo eggs will be the stable, if at first sight paradoxical, result.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3