Static antennae act as locomotory guides that compensate for visual motion blur in a diurnal, keen-eyed predator

Author:

Zurek Daniel B.1,Gilbert Cole1

Affiliation:

1. Department of Entomology, Cornell University, 6132 Comstock Hall, Ithaca, NY 14853, USA

Abstract

High visual acuity allows parallel processing of distant environmental features, but only when photons are abundant enough. Diurnal tiger beetles (Carabidae: Cicindelinae) have acute vision for insects and visually pursue prey in open, flat habitats. Their fast running speed causes motion blur that degrades visual contrast, forces stop-and-go pursuit and potentially impairs obstacle detection. We demonstrate here that vision is insufficient for obstacle detection during running, and show instead that antennal touch is both necessary and sufficient for obstacle detection. While running, tiger beetle vision appears to be photon-limited in a way reminiscent of animals in low-light habitats. Such animals often acquire wide-field spatial information through mechanosensation mediated by longer, more mobile appendages. We show that a nocturnal tiger beetle species waves its antennae in elliptical patterns typical of poorly sighted insects. While antennae of diurnal species are also used for mechanosensation, they are rigidly held forward with the tips close to the substrate. This enables timely detection of path obstructions followed by an increase in body pitch to avoid collision. Our results demonstrate adaptive mechanosensory augmentation of blurred visual information during fast locomotion, and suggest that future studies may reveal non-visual sensory compensation in other fast-moving animals.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3