Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects?

Author:

Glastad Karl M.1,Hunt Brendan G.1,Yi Soojin V.1,Goodisman Michael A. D.1

Affiliation:

1. School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA

Abstract

Organisms show great variation in ploidy level. For example, chromosome copy number varies among cells, individuals and species. One particularly widespread example of ploidy variation is found in haplodiploid taxa, wherein males are typically haploid and females are typically diploid. Despite the prevalence of haplodiploidy, the regulatory consequences of having separate haploid and diploid genomes are poorly understood. In particular, it remains unknown whether epigenetic mechanisms contribute to regulatory compensation for genome dosage. To gain greater insights into the importance of epigenetic information to ploidy compensation, we examined DNA methylation differences among diploid queen, diploid worker, haploid male and diploid male Solenopsis invicta fire ants. Surprisingly, we found that morphologically dissimilar diploid males, queens and workers were more similar to one another in terms of DNA methylation than were morphologically similar haploid and diploid males. Moreover, methylation level was positively associated with gene expression for genes that were differentially methylated in haploid and diploid castes. These data demonstrate that intragenic DNA methylation levels differ among individuals of distinct ploidy and are positively associated with levels of gene expression. Thus, these results suggest that epigenetic information may be linked to ploidy compensation in haplodiploid insects. Overall, this study suggests that epigenetic mechanisms may be important to maintaining appropriate patterns of gene regulation in biological systems that differ in genome copy number.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3