Resolving the relationships of clams and cockles: dense transcriptome sampling drastically improves the bivalve tree of life

Author:

Lemer Sarah12ORCID,Bieler Rüdiger3,Giribet Gonzalo2

Affiliation:

1. University of Guam Marine Laboratory, 303 University Drive, UOG Station, Mangilao, GU 96923, USA

2. Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA

3. Integrative Research Center, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA

Abstract

Bivalvia has been the subject of extensive recent phylogenetic work to attempt resolving either the backbone of the bivalve tree using transcriptomic data, or the tips using morpho-anatomical data and up to five genetic markers. Yet the first approach lacked decisive taxon sampling and the second failed to resolve many interfamilial relationships, especially within the diverse clade Imparidentia. Here we combine dense taxon sampling with 108 deep-sequenced Illumina-based transcriptomes to provide resolution in nodes that required additional study. We designed specific data matrices to address the poorly resolved relationships within Imparidentia. Our results support the overall backbone of the bivalve tree, the monophyly of Bivalvia and all its main nodes, although the monophyly of Protobranchia remains less clear. Likewise, the inter-relationships of the six main bivalve clades were fully supported. Within Imparidentia, resolution increases when analysing Imparidentia-specific matrices. Lucinidae, Thyasiridae and Gastrochaenida represent three early branches. Gastrochaenida is sister group to all remaining imparidentians, which divide into six orders. Neoheterodontei is always fully supported, and consists of Sphaeriida, Myida and Venerida, with the latter now also containing Mactroidea, Ungulinoidea and Chamidae, a family particularly difficult to place in earlier work. Overall, our study, by using densely sampled transcriptomes, provides the best-resolved bivalve phylogeny to date.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3