Stabilizing selection on individual pattern elements of aposematic signals

Author:

Winters Anne E.1ORCID,Green Naomi F.1ORCID,Wilson Nerida G.23ORCID,How Martin J.4ORCID,Garson Mary J.5ORCID,Marshall N. Justin6ORCID,Cheney Karen L.16ORCID

Affiliation:

1. School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia

2. Western Australian Museum, Welshpool, Western Australia 6106, Australia

3. School of Animal Biology, The University of Western Australia, Crawley, Western Australia 6009, Australia

4. School of Biological Sciences, The University of Bristol, Bristol BS8 1TQ, UK

5. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia

6. Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

Warning signal variation is ubiquitous but paradoxical: low variability should aid recognition and learning by predators. However, spatial variability in the direction and strength of selection for individual elements of the warning signal may allow phenotypic variation for some components, but not others. Variation in selection may occur if predators only learn particular colour pattern components rather than the entire signal. Here, we used a nudibranch mollusc, Goniobranchus splendidus , which exhibits a conspicuous red spot/white body/yellow rim colour pattern, to test this hypothesis. We first demonstrated that secondary metabolites stored within the nudibranch were unpalatable to a marine organism. Using pattern analysis, we demonstrated that the yellow rim remained invariable within and between populations; however, red spots varied significantly in both colour and pattern. In behavioural experiments, a potential fish predator, Rhinecanthus aculeatus , used the presence of the yellow rims to recognize and avoid warning signals. Yellow rims remained stable in the presence of high genetic divergence among populations. We therefore suggest that how predators learn warning signals may cause stabilizing selection on individual colour pattern elements, and will thus have important implications on the evolution of warning signals.

Funder

Australia and Pacific Science Foundation

Endeavour Postgraduate Award

Australian Geographic Society

Experiment.com

Australian Research Council

University of Queensland Post-doctoral Fellowship

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3