Wear, tear and systematic repair: testing models of growth dynamics in conodonts with high-resolution imaging

Author:

Shirley Bryan1ORCID,Grohganz Madleen1ORCID,Bestmann Michel2,Jarochowska Emilia1ORCID

Affiliation:

1. Fachgruppe Paläoumwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany

2. Fachgruppe Strukturgeologie, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany

Abstract

Conodont elements are the earliest mineralized vertebrate dental tools and the only ones capable of extensive repair. Two models of conodont growth, as well as the presence of a larval stage, have been hypothesized. We analysed normally and pathologically developed elements to test these hypotheses and identified three ontogenetic stages characterized by different anisometric growth and morphology. The distinction of these stages is independently corroborated by differences in tissue strontium (Sr) content. The onset of the last stage is marked by the appearance of wear resulting from mechanical food digestion. At least five episodes of damage and repair could be identified in the normally developed specimen. In the pathological element, function was compromised by the development of abnormal denticles. This development can be reconstructed as addition of new growth centres out of the main growth axis during an episode of renewed growth. Our findings support the model of periodic retraction of elements and addition of new growth centres. Changes in Sr content coincident with distinct morphology and lack of wear in the early life stage indicate that conodonts might have assumed their mature feeding habit of predators or scavengers after an initial larval stage characterized by a different feeding mode.

Funder

Deutsche Forschungsgemeinschaft

SYNTHESYS

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3