Is meiosis a fundamental cause of inviability among sexual and asexual plants and animals?

Author:

Levitis Daniel A.123ORCID,Zimmerman Kolea45,Pringle Anne12

Affiliation:

1. Department of Botany, University of Wisconsin–Madison, Madison, WI 53706, USA

2. Department of Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA

3. Department of Biology, Bates College, Lewiston, ME 04240, USA

4. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

5. Ginkgo Bioworks, 25-27 Drydock Avenue 8th Floor, Boston, MA 02210, USA

Abstract

Differences in viability between asexually and sexually generated offspring strongly influence the selective advantage and therefore the prevalence of sexual reproduction (sex). However, no general principle predicts when sexual offspring will be more viable than asexual offspring. We hypothesize that when any kind of reproduction is based on a more complex cellular process, it will encompass more potential failure points, and therefore lower offspring viability. Asexual reproduction (asex) can be simpler than sex, when offspring are generated using only mitosis. However, when asex includes meiosis and meiotic restitution, gamete production is more complex than in sex. We test our hypothesis by comparing the viability of asexual and closely related sexual offspring across a wide range of plants and animals, and demonstrate that meiotic asex does result in lower viability than sex; without meiosis, asex is mechanistically simple and provides higher viability than sex. This phylogenetically robust pattern is supported in 42 of 44 comparisons drawn from diverse plants and animals, and is not explained by the other variables included in our model. Other mechanisms may impact viability, such as effects of reproductive mode on heterozygosity and subsequent viability, but we propose the complexity of cellular processes of reproduction, particularly meiosis, as a fundamental cause of early developmental failure and mortality. Meiosis, the leading cause of inviability in humans, emerges as a likely explanation of offspring inviability among diverse eukaryotes.

Funder

Max-Planck-Gesellschaft

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3