Neural arbors are Pareto optimal

Author:

Chandrasekhar Arjun12,Navlakha Saket12ORCID

Affiliation:

1. Bioinformatics and Systems Biology Program, University of California, San Diego, UK

2. Integrative Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA

Abstract

Neural arbors (dendrites and axons) can be viewed as graphs connecting the cell body of a neuron to various pre- and post-synaptic partners. Several constraints have been proposed on the topology of these graphs, such as minimizing the amount of wire needed to construct the arbor (wiring cost), and minimizing the graph distances between the cell body and synaptic partners (conduction delay). These two objectives compete with each other—optimizing one results in poorer performance on the other. Here, we describe how well neural arbors resolve this network design trade-off using the theory of Pareto optimality. We develop an algorithm to generate arbors that near-optimally balance between these two objectives, and demonstrate that this algorithm improves over previous algorithms. We then use this algorithm to study how close neural arbors are to being Pareto optimal. Analysing 14 145 arbors across numerous brain regions, species and cell types, we find that neural arbors are much closer to being Pareto optimal than would be expected by chance and other reasonable baselines. We also investigate how the location of the arbor on the Pareto front, and the distance from the arbor to the Pareto front, can be used to classify between some arbor types (e.g. axons versus dendrites, or different cell types), highlighting a new potential connection between arbor structure and function. Finally, using this framework, we find that another biological branching structure—plant shoot architectures used to collect and distribute nutrients—are also Pareto optimal, suggesting shared principles of network design between two systems separated by millions of years of evolution.

Funder

National Science Foundation

National Institutes of Health

Pew Charitable Trusts

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3