How calorie-rich food could help marine calcifiers in a CO 2 -rich future

Author:

Leung Jonathan Y. S.12,Doubleday Zoë A.23,Nagelkerken Ivan2ORCID,Chen Yujie14,Xie Zonghan45,Connell Sean D.2ORCID

Affiliation:

1. Faculty of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China

2. Southern Seas Ecology Laboratories, School of Biological Sciences, The Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia

3. Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia

4. School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia, Australia

5. School of Engineering, Edith Cowan University, WA 6027, Australia

Abstract

Increasing carbon emissions not only enrich oceans with CO 2 but also make them more acidic. This acidifying process has caused considerable concern because laboratory studies show that ocean acidification impairs calcification (or shell building) and survival of calcifiers by the end of this century. Whether this impairment in shell building also occurs in natural communities remains largely unexplored, but requires re-examination because of the recent counterintuitive finding that populations of calcifiers can be boosted by CO 2 enrichment. Using natural CO 2 vents, we found that ocean acidification resulted in the production of thicker, more crystalline and more mechanically resilient shells of a herbivorous gastropod, which was associated with the consumption of energy-enriched food (i.e. algae). This discovery suggests that boosted energy transfer may not only compensate for the energetic burden of ocean acidification but also enable calcifiers to build energetically costly shells that are robust to acidified conditions. We unlock a possible mechanism underlying the persistence of calcifiers in acidifying oceans.

Funder

ARC Future Fellowships

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3