Pedigree-based inbreeding coefficient explains more variation in fitness than heterozygosity at 160 microsatellites in a wild bird population

Author:

Nietlisbach Pirmin1ORCID,Keller Lukas F.1,Camenisch Glauco1,Guillaume Frédéric1,Arcese Peter2,Reid Jane M.3ORCID,Postma Erik14ORCID

Affiliation:

1. Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

2. Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada

3. Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK

4. Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK

Abstract

Although the pedigree-based inbreeding coefficient F predicts the expected proportion of an individual's genome that is identical-by-descent (IBD), heterozygosity at genetic markers captures Mendelian sampling variation and thereby provides an estimate of realized IBD. Realized IBD should hence explain more variation in fitness than their pedigree-based expectations, but how many markers are required to achieve this in practice remains poorly understood. We use extensive pedigree and life-history data from an island population of song sparrows ( Melospiza melodia ) to show that the number of genetic markers and pedigree depth affected the explanatory power of heterozygosity and F , respectively, but that heterozygosity measured at 160 microsatellites did not explain more variation in fitness than F . This is in contrast with other studies that found heterozygosity based on far fewer markers to explain more variation in fitness than F . Thus, the relative performance of marker- and pedigree-based estimates of IBD depends on the quality of the pedigree, the number, variability and location of the markers employed, and the species-specific recombination landscape, and expectations based on detailed and deep pedigrees remain valuable until we can routinely afford genotyping hundreds of phenotyped wild individuals of genetic non-model species for thousands of genetic markers.

Funder

Natural Sciences and Engineering Research Council of Canada

Stiftung Dr. Joachim de Giacomi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3