Parallel telomere shortening in multiple body tissues owing to malaria infection

Author:

Asghar Muhammad1ORCID,Palinauskas Vaidas2,Zaghdoudi-Allan Nadège3,Valkiūnas Gediminas2,Mukhin Andrey4,Platonova Elena4,Färnert Anna15,Bensch Staffan3,Hasselquist Dennis3

Affiliation:

1. Unit of Infectious Diseases, Department of Medicine, Solna; Karolinska Institutet, 17176 Stockholm, Sweden

2. Nature Research Centre, Akademijos 2, Vilnius 21 08412, Lithuania

3. Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden

4. Biological Station Rybachy, ZIN RAN, 238535 Rybachy, Russia

5. Department of Infectious Diseases, Karolinska University Hospital, 17176 Stockholm, Sweden

Abstract

Several studies have shown associations between shorter telomere length in blood and weakened immune function, susceptibility to infections, and increased risk of morbidity and mortality. Recently, we have shown that malaria accelerates telomere attrition in blood cells and shortens lifespan in birds. However, the impact of infections on telomere attrition in different body tissues within an individual is unknown. Here, we tested whether malarial infection leads to parallel telomere shortening in blood and tissue samples from different organs. We experimentally infected siskins ( Spinus spinus ) with the avian malaria parasite Plasmodium ashfordi , and used real-time quantitative polymerase chain reaction (PCR) to measure telomere length in control and experimentally infected siskins. We found that experimentally infected birds showed faster telomere attrition in blood over the course of infection compared with control individuals (repeatedly measured over 105 days post-infection (DPI)). Shorter telomeres were also found in the tissue of all six major organs investigated (liver, lungs, spleen, heart, kidney, and brain) in infected birds compared with controls at 105 DPI. To the best of our knowledge, this is the first study showing that an infectious disease results in synchronous telomere shortening in the blood and tissue cells of internal organs within individuals, implying that the infection induces systemic stress. Our results have far-reaching implications for understanding how the short-term effects of an infection can translate into long-term costs, such as organ dysfunction, degenerative diseases, and ageing.

Funder

Svenska Sällskapet för Medicinsk Forskning

Vetenskapsrådet

Zoological Institute RAS

Global Grant

Russian Foundation for Basic Research

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3