Genetic change for earlier migration timing in a pink salmon population

Author:

Kovach Ryan P.1,Gharrett Anthony J.2,Tallmon David A.123

Affiliation:

1. Biology and Wildlife Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA

2. School of Fisheries and Oceanic Sciences, University of Alaska Fairbanks, Juneau, AK 99801, USA

3. Biology and Marine Biology Program, University of Alaska Southeast, Juneau, AK 99801, USA

Abstract

To predict how climate change will influence populations, it is necessary to understand the mechanisms, particularly microevolution and phenotypic plasticity, that allow populations to persist in novel environmental conditions. Although evidence for climate-induced phenotypic change in populations is widespread, evidence documenting that these phenotypic changes are due to microevolution is exceedingly rare. In this study, we use 32 years of genetic data (17 complete generations) to determine whether there has been a genetic change towards earlier migration timing in a population of pink salmon that shows phenotypic change; average migration time occurs nearly two weeks earlier than it did 40 years ago. Experimental genetic data support the hypothesis that there has been directional selection for earlier migration timing, resulting in a substantial decrease in the late-migrating phenotype (from more than 30% to less than 10% of the total abundance). From 1983 to 2011, there was a significant decrease—over threefold—in the frequency of a genetic marker for late-migration timing, but there were minimal changes in allele frequencies at other neutral loci. These results demonstrate that there has been rapid microevolution for earlier migration timing in this population. Circadian rhythm genes, however, did not show any evidence for selective changes from 1993 to 2009.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3