Into the wild: microbiome transplant studies need broader ecological reality

Author:

Greyson-Gaito Christopher J.1ORCID,Bartley Timothy J.12ORCID,Cottenie Karl1ORCID,Jarvis Will M. C.3ORCID,Newman Amy E. M.1ORCID,Stothart Mason R.4ORCID

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada

2. University of Toronto Mississauga, Mississauga, Ontario, Canada

3. Department of Biology, University of Ottawa, Ottawa, Ontario, Canada

4. Department of Ecosystem and Public Health, University of Calgary, Calgary, Alberta, Canada

Abstract

Gut microbial communities (microbiomes) profoundly shape the ecology and evolution of multicellular life. Interactions between host and microbiome appear to be reciprocal, and ecological theory is now being applied to better understand how hosts and their microbiome influence each other. However, some ecological processes that underlie reciprocal host–microbiome interactions may be obscured by the current convention of highly controlled transplantation experiments. Although these approaches have yielded invaluable insights, there is a need for a broader array of approaches to fully understand host–microbiome reciprocity. Using a directed review, we surveyed the breadth of ecological reality in the current literature on gut microbiome transplants with non-human recipients. For 55 studies, we categorized nine key experimental conditions that impact the ecological reality (EcoReality) of the transplant, including host taxon match and donor environment. Using these categories, we rated the EcoReality of each transplant. Encouragingly, the breadth of EcoReality has increased over time, but some components of EcoReality are still relatively unexplored, including recipient host environment and microbiome state. The conceptual framework we develop here maps the landscape of possible EcoReality to highlight where fundamental ecological processes can be considered in future transplant experiments.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3