Social facilitation of insect reproduction with motor-driven tactile stimuli

Author:

Uzsák Adrienn1,Dieffenderfer James2,Bozkurt Alper2,Schal Coby1

Affiliation:

1. Department of Entomology and W.M. Keck Center for Behavioral Biology, North Carolina State University, Campus Box 7613, Raleigh, NC 27695-7613, USA

2. Department of Electrical and Computer Engineering, North Carolina State University, Campus Box 7911, Raleigh, NC 27695-7911, USA

Abstract

Tactile stimuli provide animals with important information about the environment, including physical features such as obstacles, and biologically relevant cues related to food, mates, hosts and predators. The antennae, the principal sensory organs of insects, house an array of sensory receptors for olfaction, gustation, audition, nociception, balance, stability, graviception, static electric fields, and thermo-, hygro- and mechanoreception. The antennae, being the anteriormost sensory appendages, play a prominent role in social interactions with conspecifics that involve primarily chemosensory and tactile stimuli. In the German cockroach ( Blattella germanica ) antennal contact during social interactions modulates brain-regulated juvenile hormone production, ultimately accelerating the reproductive rate in females. The primary sensory modality mediating this social facilitation of reproduction is antennal mechanoreception. We investigated the key elements, or stimulus features, of antennal contact that socially facilitate reproduction in B. germanica females. Using motor-driven antenna mimics, we assessed the physiological responses of females to artificial tactile stimulation. Our results indicate that tactile stimulation with artificial materials, some deviating significantly from the native antennal morphology, can facilitate female reproduction. However, none of the artificial stimuli matched the effects of social interactions with a conspecific female.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3