Sociality emerges from solitary behaviours and reproductive plasticity in the orchid bee Euglossa dilemma

Author:

Saleh Nicholas W.1ORCID,Ramírez Santiago R.1

Affiliation:

1. Center for Population Biology, University of California, Davis, CA, USA

Abstract

The evolution of eusociality and sterile worker castes represents a major transition in the history of life. Despite this, little is known about the mechanisms involved in the initial transition from solitary to social behaviour. It has been hypothesized that plasticity from ancestral solitary life cycles was coopted to create queen and worker castes in insect societies. Here, we tested this hypothesis by examining gene expression involved in the transition from solitary to social behaviour in the orchid bee Euglossa dilemma . To this end, we conducted observations that allowed us to classify bees into four distinct categories of solitary and social behaviour. Then, by sequencing brain and ovary transcriptomes from these behavioural phases, we identified gene expression changes overlapping with socially associated genes across multiple eusocial lineages. We find that genes involved in solitary E. dilemma ovarian plasticity overlap extensively with genes showing differential expression between fertile and sterile workers—or between queens and workers in other eusocial bees. We also find evidence that sociality in E. dilemma reflects gene expression patterns involved in solitary foraging and non-foraging nest care behaviours. Our results provide strong support for the hypothesis that eusociality emerges from plasticity found across solitary life cycles.

Funder

Division of Environmental Biology

David and Lucile Packard Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3