Living with strangers: direct benefits favour non-kin cooperation in a communally nesting bird

Author:

Riehl Christina12

Affiliation:

1. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA

2. Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Schlossallee 2, 78315 Radolfzell, Germany

Abstract

The greater ani ( Crotophaga major ), a Neotropical cuckoo, exhibits an unusual breeding system in which several socially monogamous pairs lay eggs in a single nest and contribute care to the communal clutch. Cooperative nesting is costly—females compete for reproduction by ejecting each other's eggs—but the potential direct or indirect fitness benefits that might accrue to group members have not been identified. In this study, I used molecular genotyping to quantify patterns of genetic relatedness and individual reproductive success within social groups in a single colour-banded population. Microsatellite analysis of 122 individuals in 49 groups revealed that group members are not genetic relatives. Group size was strongly correlated with individual reproductive success: solitary pairs were extremely rare and never successful, and nests attended by two pairs were significantly more likely to be depredated than were nests attended by three pairs. Egg loss, a consequence of reproductive competition, was greater in large groups and disproportionately affected females that initiated laying. However, early-laying females compensated for egg losses by laying larger clutches, and female group members switched positions in the laying order across nesting attempts. The greater ani, therefore, appears to be one of the few species in which cooperative breeding among unrelated individuals is favoured by direct, shared benefits that outweigh the substantial costs of reproductive competition.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3