Adaptive developmental plasticity in rhesus macaques: the serotonin transporter gene interacts with maternal care to affect juvenile social behaviour

Author:

Madrid Jesus E.12ORCID,Mandalaywala Tara M.3,Coyne Sean P.4,Ahloy-Dallaire Jamie5,Garner Joseph P.25,Barr Christina S.6,Maestripieri Dario78,Parker Karen J.2

Affiliation:

1. Neurosciences Program, Stanford University, Stanford, CA 94305, USA

2. Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA 94305, USA

3. Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA

4. Department of Psychology, Notre Dame of Maryland University, Baltimore, MD 21210, USA

5. Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA

6. National Institute of Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892, USA

7. Department of Comparative Human Development, The University of Chicago, Chicago, IL 60637, USA

8. Institute for Mind and Biology, The University of Chicago, Chicago, IL 60637, USA

Abstract

Research has increasingly highlighted the role that developmental plasticity—the ability of a particular genotype to produce variable phenotypes in response to different early environments—plays as an adaptive mechanism. One of the most widely studied genetic contributors to developmental plasticity in humans and rhesus macaques is a serotonin transporter gene-linked polymorphic region (5-HTTLPR), which determines transcriptional efficiency of the serotonin transporter gene in vitro and modifies the availability of synaptic serotonin in these species. A majority of studies to date have shown that carriers of a loss-of-function variant of the 5-HTTLPR, the short (s) allele, develop a stress-reactive phenotype in response to adverse early environments compared with long (l) allele homozygotes, leading to the prevalent conceptualization of the s-allele as a vulnerability allele. However, this framework fails to address the independent evolution of these loss-of-function mutations in both humans and macaques as well as the high population prevalence of s-alleles in both species. Here we show in free-ranging rhesus macaques that s-allele carriers benefit more from supportive early social environments than l-allele homozygotes, such that s-allele carriers which receive higher levels of maternal protection during infancy demonstrate greater social competence later in life. These findings provide, to our knowledge, the first empirical support for the assertion that the s-allele grants high undirected biological sensitivity to context in primates and suggest a mechanism through which the 5-HTTLPR s-allele is maintained in primate populations.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of Mental Health

NIH Office of the Director

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3