Genetic coupling of signal and preference facilitates sexual isolation during rapid speciation

Author:

Xu Mingzi1ORCID,Shaw Kerry L.1

Affiliation:

1. Department of Neurobiology and Behavior, Cornell University, 215 Tower Rd, Ithaca, NY 14853, USA

Abstract

The divergence of sexual signals is ultimately a coevolutionary process: while signals and preferences diverge between lineages, they must remain coordinated within lineages for matings to occur. Divergence in sexual signals makes a major contribution to evolving species barriers. Therefore, the genetic architecture underlying signal–preference coevolution is essential to understanding speciation but remains largely unknown. In Laupala crickets where male song pulse rate and female pulse rate preferences have coevolved repeatedly and rapidly, we tested two contrasting hypotheses for the genetic architecture underlying signal–preference coevolution: linkage disequilibrium between unlinked loci and genetic coupling (linkage disequilibrium resulting from pleiotropy of a shared locus or tight physical linkage). Through selective introgression and quantitative trait locus (QTL) fine mapping, we estimated the location of QTL underlying interspecific variation in both female preference and male pulse rate from the same mapping populations. Remarkably, map estimates of the pulse rate and preference loci are as close as 0.06 cM apart, the strongest evidence to date for genetic coupling between signal and preference loci. As the second pair of colocalizing signal and preference loci in the Laupala genome, our finding supports an intriguing pattern, pointing to a major role for genetic coupling in the quantitative evolution of a reproductive barrier and rapid speciation in Laupala . Owing to its effect on suppressing recombination, a coupled, quantitative genetic architecture offers a powerful and parsimonious genetic mechanism for signal–preference coevolution and the establishment of positive genetic covariance on which the Fisherian runaway process of sexual selection relies.

Funder

Division of Integrative Organismal Systems

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3