Quantifying spatio-temporal variation of invasion spread

Author:

Goldstein Joshua1,Park Jaewoo2,Haran Murali2ORCID,Liebhold Andrew3,Bjørnstad Ottar N.4

Affiliation:

1. Social and Data Analytics Laboratory, Virginia Tech, 900 N Glebe Rd, Arlington, VA 22203, USA

2. Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

3. US Forest Service Northern Research Station, Morgantown, WV 26505, USA

4. Departments of Entomology and Biology, Pennsylvania State University, University Park, PA 16802, USA

Abstract

The spread of invasive species can have far-reaching environmental and ecological consequences. Understanding invasion spread patterns and the underlying process driving invasions are key to predicting and managing invasions. We combine a set of statistical methods in a novel way to characterize local spread properties and demonstrate their application using simulated and historical data on invasive insects. Our method uses a Gaussian process fit to the surface of waiting times to invasion in order to characterize the vector field of spread. Using this method, we estimate with statistical uncertainties the speed and direction of spread at each location. Simulations from a stratified diffusion model verify the accuracy of our method. We show how we may link local rates of spread to environmental covariates for two case studies: the spread of the gypsy moth ( Lymantria dispar ), and hemlock woolly adelgid ( Adelges tsugae ) in North America. We provide an R-package that automates the calculations for any spatially referenced waiting time data.

Funder

National Science Foundation

Bill and Melinda Gates Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3