Affiliation:
1. Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
Abstract
Identifying regions of the genome contributing to phenotypic evolution often involves genetic mapping of quantitative traits. The focus then turns to identifying regions of ‘major’ effect, overlooking the observation that traits of ecological or evolutionary relevance usually involve many genes whose individual effects are small but whose cumulative effect is large. Herein, we use the power of fully interfertile natural populations of a single species of mosquito to develop three quantitative trait loci (QTL) maps: one between two post-glacially diverged populations and two between a more ancient and a post-glacial population. All demonstrate that photoperiodic response is genetically a highly complex trait. Furthermore, we show that marker regressions identify apparently ‘non-significant’ regions of the genome not identified by composite interval mapping, that the perception of the genetic basis of adaptive evolution is crucially dependent upon genetic background and that the genetic basis for adaptive evolution of photoperiodic response is highly variable within contemporary populations as well as between anciently diverged populations.
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献