Evolution of protolinguistic abilities as a by-product of learning to forage in structured environments

Author:

Kolodny Oren1,Edelman Shimon2,Lotem Arnon1

Affiliation:

1. Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel

2. Department of Psychology, Cornell University, Ithaca, NY 14853, USA

Abstract

The skills required for the learning and use of language are the focus of extensive research, and their evolutionary origins are widely debated. Using agent-based simulations in a range of virtual environments, we demonstrate that challenges of foraging for food can select for cognitive mechanisms supporting complex, hierarchical, sequential learning, the need for which arises in language acquisition. Building on previous work, where we explored the conditions under which reinforcement learning is out-competed by seldom-reinforced continuous learning that constructs a network model of the environment, we now show that realistic features of the foraging environment can select for two critical advances: (i) chunking of meaningful sequences found in the data, leading to representations composed of units that better fit the prevalent statistical patterns in the environment; and (ii) generalization across units based on their contextual similarity. Importantly, these learning processes, which in our framework evolved for making better foraging decisions, had been earlier shown to reproduce a range of findings in language learning in humans. Thus, our results suggest a possible evolutionary trajectory that may have led from basic learning mechanisms to complex hierarchical sequential learning that can support advanced cognitive abilities of the kind needed for language acquisition.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3