Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis

Author:

Batáry Péter1,Báldi András2,Kleijn David3,Tscharntke Teja1

Affiliation:

1. Department of Agroecology, Georg-August University, Griesebachstrasse 6, 37077 Göttingen, Germany

2. Animal Ecology Research Group, Hungarian Academy of Sciences and Hungarian Natural History Museum, Baross utca 13, 1088 Budapest, Hungary

3. Alterra Centre for Ecosystem Studies, Droevendaalsesteeg 3, PO Box 47, 6700 AA, Wageningen, The Netherlands

Abstract

Agri-environmental management (AEM) is heralded as being key to biodiversity conservation on farmland, yet results of these schemes have been mixed, making their general utility questionable. We test with meta-analysis whether the benefits of AEM for species richness and abundance of plants and animals are determined by the surrounding landscape context. Across all studies (109 observations for species richness and 114 observations for abundance), AEM significantly increased species richness and their abundance. More specifically, we test the hypothesis that AEM benefits species richness and abundance (i.e. increases the difference between fields with and without AEM) more in simple than in complex landscapes. In croplands, species richness but not abundance was significantly enhanced in simple but not in complex landscapes. In grasslands, AEM effectively enhanced species richness and abundance regardless of landscape context. Pollinators were significantly enhanced by AEM in simple but not in complex landscapes in both croplands and grasslands. Our results highlight that the one-size-fits-all approach of many agri-environmental programmes is not an efficient way of spending the limited funds available for biodiversity conservation on farmland. Therefore, we conclude that AEM should be adapted to landscape structure and the species groups at which they are targeted.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3