Abstract
Archosaurs, like all vertebrates, have different types of joints that allow or restrict cranial kinesis, such as synovial joints and fibrous joints. In general, synovial joints are more kinetic than fibrous joints, because the former possess a fluid-filled cavity and articular cartilage that facilitate movement. Even though there is a considerable lack of data on the microstructure and the structure–function relationships in the joints of extant archosaurs, many functional inferences of cranial kinesis in fossil archosaurs have hinged on the assumption that elongated condylar joints are (i) synovial and/or (ii) kinetic. Cranial joint microstructure was investigated in an ontogenetic series of American alligators,
Alligator mississippiensis
. All the presumably synovial, condylar joints found within the head of the American alligator (the jaw joint, otic joint and laterosphenoid–postorbital (LS–PO) joint) were studied by means of paraffin histology and undecalcified histology paired with micro-computed tomography data to better visualize three-dimensional morphology. Results show that among the three condylar joints of
A. mississippiensis
, the jaw joint was synovial as expected, but the otherwise immobile otic and LS–PO joints lacked a synovial cavity. Therefore, condylar morphology does not always imply the presence of a synovial articulation nor mobility. These findings reveal an undocumented diversity in the joint structure of alligators and show that crocodylians and birds build novel, kinetic cranial joints differently. This complicates accurate identification of synovial joints and functional inferences of cranial kinesis in fossil archosaurs and tetrapods in general.
Funder
Division of Integrative Organismal Systems
Division of Earth Sciences
Missouri Research Board
Department of Pathology and Anatomical Sciences - MU
Subject
General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献