Scaling of sensorimotor control in terrestrial mammals

Author:

More Heather L.1,Hutchinson John R.2,Collins David F.3,Weber Douglas J.4,Aung Steven K. H.5,Donelan J. Maxwell1

Affiliation:

1. Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

2. Structure and Motion Laboratory, Department of Veterinary Basic Sciences, The Royal Veterinary College, London NW1 0TU, UK

3. Faculty of Physical Education and Recreation, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2H9

4. Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA

5. Department of Medicine and Family Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H9

Abstract

Sensorimotor control is greatly affected by two factors—the time it takes for an animal to sense and respond to stimuli (responsiveness), and the ability of an animal to distinguish between sensory stimuli and generate graded muscle forces (resolution). Here, we demonstrate that anatomical limitations force a necessary trade-off between responsiveness and resolution with increases in animal size. To determine whether responsiveness is prioritized over resolution, or resolution over responsiveness, we studied how size influences the physiological mechanisms underlying sensorimotor control. Using both new electrophysiological experiments and existing data, we determined the maximum axonal conduction velocity (CV) in animals ranging in size from shrews to elephants. Over the 100-fold increase in leg length, CV was nearly constant, increasing proportionally with mass to the 0.04 power. As a consequence, larger animals are burdened with relatively long physiological delays, which may have broad implications for their behaviour, ecology and evolution, including constraining agility and requiring prediction to help control movements.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3