Tropical seagrass Halophila stipulacea shifts thermal tolerance during Mediterranean invasion

Author:

Wesselmann Marlene1ORCID,Anton Andrea2ORCID,Duarte Carlos M.2,Hendriks Iris E.1,Agustí Susana3,Savva Ioannis4,Apostolaki Eugenia T.5,Marbà Núria1ORCID

Affiliation:

1. Global Change Research Group, IMEDEA (CSIC-UIB), Institut Mediterrani d'Estudis Avançats, Miquel Marquès 21, 07190, Esporles, Illes Balears, Spain

2. Red Sea Research Centre (RSRC) and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

3. Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

4. Marine and Environmental Research (MER) Lab, Limassol 4533, Cyprus

5. Institute of Oceanography, Hellenic Centre for Marine Research, PO Box 2214, 71003 Heraklion, Crete, Greece

Abstract

Exotic species often face new environmental conditions that are different from those that they are adapted to. The tropical seagrass Halophila stipulacea is a Lessepsian migrant that colonized the Mediterranean Sea around 100 years ago, where at present the minimum seawater temperature is cooler than in its native range in the Red Sea. Here, we tested if the temperature range in which H. stipulacea can exist is conserved within the species or if the exotic populations have shifted their thermal breadth and optimum due to the cooler conditions in the Mediterranean. We did so by comparing the thermal niche (e.g. optimal temperatures, and upper and lower thermal limits) of native (Saudi Arabia in the Red Sea) and exotic (Greece and Cyprus in the Mediterranean Sea) populations of H. stipulacea . We exposed plants to 12 temperature treatments ranging from 8 to 40°C for 7 days. At the end of the incubation period, we measured survival, rhizome elongation, shoot recruitment, net population growth and metabolic rates. Upper and lower lethal thermal thresholds (indicated by 50% plant mortality) were conserved across populations, but minimum and optimal temperatures for growth and oxygen production were lower for Mediterranean populations than for the Red Sea one. The displacement of the thermal niche of exotic populations towards the colder Mediterranean Sea regime could have occurred within 175 clonal generations.

Funder

Spanish Ministry of Economy and Competiveness

Spanish Ministry of Science, Innovation and Universities

King Abdullah University for Science and Technology

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3