Marker-dependent associations among oxidative stress, growth and survival during early life in a wild mammal

Author:

Christensen Louise L.1ORCID,Selman Colin2,Blount Jonathan D.3,Pilkington Jill G.4,Watt Kathryn A.4,Pemberton Josephine M.4,Reid Jane M.1,Nussey Daniel H.4ORCID

Affiliation:

1. Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK

2. Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow AB24 2TZ, UK

3. College of Life and Environmental Sciences, University of Exeter, Penryn Campus, TR10 9EZ, UK

4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JG, UK

Abstract

Oxidative stress (OS) is hypothesized to be a key physiological mechanism mediating life-history trade-offs, but evidence from wild populations experiencing natural environmental variation is limited. We tested the hypotheses that increased early life growth rate increases OS, and that increased OS reduces first-winter survival, in wild Soay sheep ( Ovis aries ) lambs. We measured growth rate and first-winter survival for four consecutive cohorts, and measured two markers of oxidative damage (malondialdehyde (MDA), protein carbonyls (PC)) and two markers of antioxidant (AOX) protection (total AOX capacity (TAC), superoxide dismutase (SOD)) from blood samples. Faster lamb growth was weakly associated with increased MDA, but not associated with variation in the other three markers. Lambs with higher SOD activity were more likely to survive their first winter, as were male but not female lambs with lower PC concentrations. Survival did not vary with MDA or total TAC. Key predictions relating OS to growth and survival were therefore supported in some OS markers, but not others. This suggests that different markers capture different aspects of the complex relationships between individual oxidative state, physiology and fitness, and that overarching hypotheses relating OS to life-history variation cannot be supported or refuted by studying individual markers.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3