Optimal control approaches for combining medicines and mosquito control in tackling dengue

Author:

Rawson Thomas1ORCID,Wilkins Kym E.2,Bonsall Michael B.1ORCID

Affiliation:

1. Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

2. School of Mathematical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

Dengue is a debilitating and devastating viral infection spread by mosquito vectors, and over half the world’s population currently live at risk of dengue (and other flavivirus) infections. Here, we use an integrated epidemiological and vector ecology framework to predict optimal approaches for tackling dengue. Our aim is to investigate how vector control and/or vaccination strategies can be best combined and implemented for dengue disease control on small networks, and whether these optimal strategies differ under different circumstances. We show that a combination of vaccination programmes and the release of genetically modified self-limiting mosquitoes (comparable to sterile insect approaches) is always considered the most beneficial strategy for reducing the number of infected individuals, owing to both methods having differing impacts on the underlying disease dynamics. Additionally, depending on the impact of human movement on the disease dynamics, the optimal way to combat the spread of dengue is to focus prevention efforts on large population centres. Using mathematical frameworks, such as optimal control, are essential in developing predictive management and mitigation strategies for dengue disease control.

Funder

Defense Advanced Research Projects Agency

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

Reference37 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of Mathematical Programming to Genetic Biocontrol;SIAM Journal on Applied Mathematics;2023-09-20

2. Sensitivity Analysis of Vector-host Dynamic Dengue Epidemic Model;Communications in Mathematics and Applications;2023-09-18

3. Modeling and optimal control of dengue disease with screening and information;The European Physical Journal Plus;2021-11

4. Optimal COVID-19 Vaccine Sharing Between Two Nations That Also Have Extensive Travel Exchanges;Frontiers in Public Health;2021-08-12

5. Implementation and acceleration of optimal control for systems biology;Journal of The Royal Society Interface;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3