Multi-modal imaging and analysis in the search for iron-based magnetoreceptors in the honeybee Apis mellifera

Author:

Shaw Jeremy A.1ORCID,Boyd Alastair1,House Michael2,Cowin Gary3,Baer Boris4

Affiliation:

1. Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia 6009, Australia

2. School of Physics, The University of Western Australia, Perth, Western Australia 6009, Australia

3. Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia

4. Centre for Integrative Bee Research, Department of Entomology, University of California, Riverside, CA 92521, USA

Abstract

The honeybee Apis mellifera is one of many animal species for which empirical evidence of a magnetic sense has been provided. The underlying mechanisms postulated for magnetoreception in bees are varied, but most point towards the abdomen as the most likely anatomical region for its location, partly owing to the large accumulation of iron in trophocyte cells that comprise the honeybee fat body. Using a multi-modal imaging and analysis approach, we have investigated iron in the honeybee, with a particular focus on the abdomen and the utility of such techniques as applied to magnetoreception. Abdominal iron is shown to accumulate rapidly, reaching near maximum levels only 5 days after emerging from the comb and is associated with the accumulation of iron within the fat body. While fat body iron could be visualized, no regions of interest, other than perhaps the fat body itself, were identified as potential sites for magnetoreceptive cells. If an iron-based magnetoreceptor exists within the honeybee abdomen the large accumulation of iron in the fat body is likely to impede its discovery.

Funder

Australian Research Council

National Imaging Facility-Subsidised Access

UWA-UQ Bilateral Research Collaboration Award

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3