Impact of the functionalization onto structure transformation and gas adsorption of MIL-68(In)

Author:

Wu Lei12ORCID,Wang Weifeng12,Liu Rong12,Wu Gang3,Chen Huaxin2

Affiliation:

1. Polymer Materials and Engineering Department, School of Materials Science and Engineering, Chang'an University, Xi'an 710064, People's Republic of China

2. Engineering Research Center of Transportation Materials Ministry of Education, Chang'an University, Xi'an 710064, People's Republic of China

3. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China

Abstract

A series of functionalization –NH 2 , –Br and –NO 2 has been performed on MIL-68(In) material in order to improve the porosity features of the pristine material. The functional groups grafted onto the ligand and the molar ratios of the ingredient indicate a profound influence on product formation. With the incremental amount of metal source, product structures undergo the transformation from MIL-68 to MIL-53 or QMOF-2. The situation is different depending on the variation of the ligands. Gas (N 2 , Ar, H 2 and CO 2 ) adsorption–desorption isotherms were systematically investigated to explore the impact of the functionalization on the porous prototypical framework. Comparison of adsorption behaviour of N 2 and Ar indicates that the polar molecule exhibits striking interaction to N 2 molecule, which has a considerable quadrupole moment. Therefore, as a probe molecule, Ar with no quadrupole moment is more suitable to characterize the surface area with the polar groups. Meanwhile, Ar adsorption result confirms that the negative influence on the surface area stems from the size of the substituting groups. The uptake of H 2 and CO 2 indicates that the introduction of appropriate polar organic groups can effectively enhance the adsorption enthalpy of relative gases and improve the gas adsorption capacity apparently at low pressure. The introduction of –NO 2 is in favour of improving the H 2 adsorption capacity, while the grafted –NH 2 groups can most effectively enhance the CO 2 adsorption capacity.

Funder

China Postdoctoral Science Foundation

Natural Science Basic Research Plan in Shaanxi Province of China

Special Fund for Basic Scientific Research of Central Colleges, Chang'an University

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3