Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes

Author:

Toju Hirokazu12ORCID,Tanaka Yu23

Affiliation:

1. Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2133, Japan

2. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan

3. Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto 606-8502, Japan

Abstract

Cyst and root-knot nematodes are major risk factors of agroecosystem management, often causing devastating impacts on crop production. The use of microbes that parasitize or prey on nematodes has been considered as a promising approach for suppressing phytopathogenic nematode populations. However, effects and persistence of those biological control agents often vary substantially depending on regions, soil characteristics and agricultural practices: more insights into microbial community processes are required to develop reproducible control of nematode populations. By performing high-throughput sequencing profiling of bacteria and fungi, we examined how root and soil microbiomes differ between benign and nematode-infected plant individuals in a soybean field in Japan. Results indicated that various taxonomic groups of bacteria and fungi occurred preferentially on the soybean individuals infected by root-knot nematodes or those uninfected by nematodes. Based on a network analysis of potential microbe–microbe associations, we further found that several fungal taxa potentially preying on nematodes ( Dactylellina (Orbiliales), Rhizophydium (Rhizophydiales), Clonostachys (Hypocreales), Pochonia (Hypocreales) and Purpureocillium (Hypocreales)) co-occurred in the soybean rhizosphere at a small spatial scale. This study suggests how ‘consortia’ of anti-nematode microbes can derive from indigenous (resident) microbiomes, providing basic information for managing anti-nematode microbial communities in agroecosystems.

Funder

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3