Novel Fourier quadrature transforms and analytic signal representations for nonlinear and non-stationary time-series analysis

Author:

Singh Pushpendra1ORCID

Affiliation:

1. School of Engineering and Applied Sciences, Bennett University, Greater Noida, India

Abstract

The Hilbert transform (HT) and associated Gabor analytic signal (GAS) representation are well known and widely used mathematical formulations for modelling and analysis of signals in various applications. In this study, like the HT, to obtain quadrature component of a signal, we propose novel discrete Fourier cosine quadrature transforms (FCQTs) and discrete Fourier sine quadrature transforms (FSQTs), designated as Fourier quadrature transforms (FQTs). Using these FQTs, we propose 16 Fourier quadrature analytic signal (FQAS) representations with following properties: (1) real part of eight FQAS representations is the original signal, and imaginary part of each representation is FCQT of real part; (2) imaginary part of eight FQAS representations is the original signal, and real part of each representation is FSQT of imaginary part; (3) like the GAS, Fourier spectrum of all FQAS representations has only positive frequencies; however, unlike the GAS, real and imaginary parts of FQAS representations are not orthogonal. The Fourier decomposition method (FDM) is an adaptive data analysis approach to decompose a signal into a set Fourier intrinsic band functions. This study also proposes new formulations of the FDM using discrete cosine transform with GAS and FQAS representations, and demonstrates its efficacy for improved time-frequency-energy representation and analysis of many real-life nonlinear and non-stationary signals.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference66 articles.

1. Variable Frequency Electric Circuit Theory with Application to the Theory of Frequency-Modulation

2. Theory of communication;Gabor D;Elect. Eng. Part III J. Inst. Radio Commun. Eng.,1946

3. Theorie et application de la notion de signal analytic;Ville J;Cables et Transmissions,1948

4. ‘Instantaneous’ frequency;Shekel J;Proc. IRE,1953

5. On the definition of concepts of amplitude, phase and instantaneous frequency;Vakman DE;Radio Eng. Electron. Phys.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3