Petrophysical characterization of high-rank coal by nuclear magnetic resonance: a case study of the Baijiao coal reservoir, SW China

Author:

Zhang Dongming12,Chu Yapei12ORCID,Li Shujian12,Yang Yushun12ORCID,Bai Xin12ORCID,Ye Chen12,Wen Decai3

Affiliation:

1. State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, People's Republic of China

2. College of Resources and Environmental Science, Chongqing University, Chongqing 400044, People's Republic of China

3. Sichuan Coal Group Furong Company, Sichuan 64402, People's Republic of China

Abstract

To better apply nuclear magnetic resonance (NMR) to evaluate the petrophysical characterization of high-rank coal, six anthracite samples from the Baijiao coal reservoir were measured by NMR. The porosity, T 2 cutoff value, permeability and pore type were analysed using the transverse relaxation time ( T 2 ) spectrum before and after centrifugation. The results show that the T 2 spectrum of water-saturated anthracite can be divided into a discontinuous and continuous trimodal distribution. According to the connectivity among pores, three T 2 spectrum peaks were identified at the relaxation times of 0.01–1.7 ms, 1.7–65 ms and greater than 65 ms, which correspond to the micropores (less than 100 nm), mesopores (100–1000 nm) and macropores (greater than 1000 nm), respectively. Based on the T 2 cutoff value, we divided the T 2 spectrum into two parts: bound fluid and free fluid. By comparing two classic permeability models, we proposed a permeability model to calculate the permeability of anthracite. This result demonstrates that NMR has great significance to the exploration of coal reservoirs and to the understanding of the development of coalbed methane.

Funder

Fundamental Research Funds for the Central Universities

State Key Lab. of Coal Mine Disaster Dynamics and Control

Nature Science Foundation of China

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3