Using a robotic fish to investigate individual differences in social responsiveness in the guppy

Author:

Bierbach David1ORCID,Landgraf Tim2ORCID,Romanczuk Pawel345,Lukas Juliane13ORCID,Nguyen Hai1,Wolf Max1,Krause Jens13ORCID

Affiliation:

1. Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany

2. Department of Mathematics and Computer Science, Freie Universität Berlin, Institute for Computer Science, Arnimallee 7, 14195 Berlin, Germany

3. Faculty of Life Sciences, Humboldt University of Berlin, Thaer Institute, Hinter d. Reinhardtstr. 8-18, Berlin, Germany

4. Department of Biology, Institute for Theoretical Biology, Humboldt Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany

5. Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany

Abstract

Responding towards the actions of others is one of the most important behavioural traits whenever animals of the same species interact. Mutual influences among interacting individuals may modulate the social responsiveness seen and thus make it often difficult to study the level and individual variation in responsiveness. Here, open-loop biomimetic robots that provide standardized, non-interactive social cues can be a useful tool. These robots are not affected by the live animal's actions but are assumed to still represent valuable and biologically relevant social cues. As this assumption is crucial for the use of biomimetic robots in behavioural studies, we hypothesized (i) that meaningful social interactions can be assumed if live animals maintain individual differences in responsiveness when interacting with both a biomimetic robot and a live partner. Furthermore, to study the level of individual variation in social responsiveness, we hypothesized (ii) that individual differences should be maintained over the course of multiple tests with the robot. We investigated the response of live guppies ( Poecilia reticulata ) when allowed to interact either with a biomimetic open-loop-controlled fish robot—‘Robofish’—or with a live companion. Furthermore, we investigated the responses of live guppies when tested three times with Robofish. We found that responses of live guppies towards Robofish were weaker compared with those of a live companion, most likely as a result of the non-interactive open-loop behaviour of Robofish. Guppies, however, were consistent in their individual responses between a live companion and Robofish, and similar individual differences in response towards Robofish were maintained over repeated testing even though habituation to the test environment was detectable. Biomimetic robots like Robofish are therefore a useful tool for the study of social responsiveness in guppies and possibly other small fish species.

Funder

Deutsche Forschungsgemeinschaft

Leibniz-Gemeinschaft

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3