Affiliation:
1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, People's Republic of China
Abstract
Due to a wide range of applications, sand casting occupies an important position in modern casting practice. The main purpose of this study was to optimize the performance parameters of sand casting based on grey relational analysis and predict the missing data using back propagation (BP) neural network. First, the influence of human factors was eliminated by adopting the objective entropy weight method, which also saved manpower. The larger variation degree in the evaluation indicators, indicating that the evaluated projects had good discrimination in this regard, the larger weight should be given to these evaluation indicators. Second, the performance parameters of sand casting were optimized based on grey relational analysis, providing a reference for sand milling. The larger the grey relational degree, the closer the evaluated project was to the ideal project. Third, this paper provided a new method for determining the number of hidden neurons in a network according to the mean square error of training samples, and venting quality was predicted based on BP neural network. The relevant theory was deduced before predicting missing data, such that there will be a general understanding regarding the prediction principle of BP neural network. Fourth, to demonstrate the validity of BP neural network adopted in the process of missing data prediction, grey system theory was applied to compare the result of missing data prediction.
Funder
Basic Scientific Research Program of China Academy of Safety Science and Technology
National Key Research and Development Program of China
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献