Does variation in egg structure among five populations of Atlantic salmon ( Salmo salar ) influence their survival in low oxygen conditions?

Author:

Bloomer Jack1ORCID,Sear David1,Kemp Paul2

Affiliation:

1. Department of Geography and the Environment, University of Southampton, Building 44, University Road, Southampton SO17 1BJ, UK

2. International Centre for Ecohydraulics Research, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK

Abstract

Oxygen supply to the salmonid egg surface can be limited by external factors such as sedimentation and groundwater upwelling, while the egg membrane itself can impede diffusion from the egg surface to the embryo. Therefore, the structure of egg membranes could affect the rate at which embryos obtain oxygen from their surroundings. Published field data indicate that oxygen stress experienced by salmonid eggs can vary widely among populations. Therefore, if membrane architecture influences diffusion rate to the embryo, selection for more permeable membranes could occur in oxygen-stressed environments. Using electron microscopy, the membrane structure of eggs obtained from five UK Atlantic salmon ( Salmo salar ) populations is described. Membrane thickness, porosity and permeability to dissolved oxygen varied among populations. Furthermore, comparison of membranes of eggs that survived laboratory controlled low-oxygen conditions compared to those that died suggested that ova with less permeable membranes were more susceptible to hypoxia-induced mortality. In addition, membrane porosity was lower than previously reported indicating that oxygen requirements during incubation have been underestimated, so models such as the mass transfer theory that predict incubation success could currently overestimate ova survival. Variation in egg membrane structure influences low oxygen tolerance of Atlantic salmon embryos and could represent adaptation to low oxygen stress. Consequently, stock enhancement techniques such as supportive breeding that relieve incubation stress could erode structural adaptations.

Funder

University of Southampton

Environment Agency

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3