Bioimmobilization of lead by Bacillus subtilis X3 biomass isolated from lead mine soil under promotion of multiple adsorption mechanisms

Author:

Qiao Weichuan1ORCID,Zhang Yunhao1,Xia Hao1,Luo Yang1,Liu Si1,Wang Shiyu1,Wang Weihan1

Affiliation:

1. Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, People's Republic of China

Abstract

In this study, a lead-resistant bacterium, Bacillus subtilis X3, was used to prepare a lead bioadsorbent for immobilization and removal of lead in lead solution. The lead shot precipitate was analysed by scanning electron microscopy combined with energy dispersive X-ray fluorescence microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The adsorbed lead was mainly mineralized to form Pb 5 (PO 4 ) 3 OH, Pb 10 (PO 4 ) 6 (OH) 2 and Pb 5 (PO 4 ) 3 Cl; however, other mechanisms that can also promote the mineralization of lead should not be ignored. For example, Na + and Ca 2+ on the cell wall surface were exchanged with Pb 2+ in solution, which confirmed that the ion-exchange process occurred before mineralization. Moreover, adsorption bridging caused by extracellular polymeric substances also accelerated the further aggregation of lead, and the biomass was encapsulated by lead gradually. Hydroxyl, carbonyl, carboxyl and amine groups were not observed in lead mineral crystals, but the complexation between lead and these groups still benefited the mineralization of lead. The valence of Pb(II) was not changed after mineralization, which indicated that the biosorption process was not a redox reaction. Finally, biosorption occurred on the outer surface of the cell, but its specific surface area was relatively small, limiting the amount and efficiency of biosorption.

Funder

the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3