Affiliation:
1. Chair of Modelling and Simulation of Structures, Bauhaus-Universität Weimar, Weimar, Germany
2. Chair of Applied Mathematics, Bauhaus-Universität Weimar, Weimar, Germany
Abstract
Reliable modelling in structural engineering is crucial for the serviceability and safety of structures. A huge variety of aerodynamic models for aeroelastic analyses of bridges poses natural questions on their complexity and thus, quality. Moreover, a direct comparison of aerodynamic models is typically either not possible or senseless, as the models can be based on very different physical assumptions. Therefore, to address the question of principal comparability and complexity of models, a more abstract approach, accounting for the effect of basic physical assumptions, is necessary. This paper presents an application of a recently introduced category theory-based modelling approach to a diverse set of models from bridge aerodynamics. Initially, the categorical approach is extended to allow an adequate description of aerodynamic models. Complexity of the selected aerodynamic models is evaluated, based on which model comparability is established. Finally, the utility of the approach for model comparison and characterization is demonstrated on an illustrative example from bridge aeroelasticity. The outcome of this study is intended to serve as an alternative framework for model comparison and impact future model assessment studies of mathematical models for engineering applications.
Funder
Bauhaus-Universität Weimar
Deutsche Forschungsgemeinschaft
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献