Overcoming a ‘forbidden phenotype’: the parrot's head supports, propels and powers tripedal locomotion

Author:

Young Melody W.1ORCID,Dickinson Edwin1ORCID,Flaim Nicholas D.1ORCID,Granatosky Michael C.12ORCID

Affiliation:

1. Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA

2. Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA

Abstract

No vertebrate, living or extinct, is known to have possessed an odd number of limbs. Despite this ‘forbidden phenotype’, gaits that use odd numbers of limbs (e.g. tripedalism or pentapedalism) have evolved in both avian and mammalian lineages. Tripedal locomotion is commonly employed by parrots during climbing, who use their beaks as an additional support. However, it is unclear whether the beak functions simply as a stabilizing hook, or as a propulsive limb. Here, we present data on kinetics of tripedal climbing in six rosy-faced lovebirds ( Agapornis roseicollis ). Our findings demonstrate that parrots use cyclical tripedal gaits when climbing and the beak and hindlimbs generate comparable propulsive and tangential substrate reaction forces and power. Propulsive and tangential forces generated by the beak are of magnitudes equal to or greater than those forces generated by the forelimbs of humans and non-human primates during vertical climbing. We conclude that the feeding apparatus and neck flexors of parrots have been co-opted to function biomechanically as a propulsive third limb during vertical climbing. We hypothesize that this exaptation required substantive alterations to the neuromuscular system including enhanced force-generating capabilities of the neck flexors and modifications to locomotor central pattern generators.

Funder

Center for Biomedical Innovation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference32 articles.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3