Kin-mediated plasticity in alternative reproductive tactics

Author:

Lymbery Samuel J.12ORCID,Tomkins Joseph L.2ORCID,Buzatto Bruno A.23,Hosken David J.1ORCID

Affiliation:

1. Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9EZ, Cornwall, UK

2. Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Western Australia, Australia

3. Department of Biological Sciences (E8C 209), Macquarie University, Sydney 2109, New South Wales, Australia

Abstract

Conditional strategies occur when the relative fitness pay-off from expressing a given phenotype is contingent upon environmental circumstances. This conditional strategy model underlies cases of alternative reproductive tactics, in which individuals of one sex employ different means to obtain reproduction. How kin structure affects the expression of alternative reproductive tactics remains unexplored. We address this using the mite Rhizoglyphus echinopus , in which large males develop into aggressive ‘fighters’ and small males develop into non-aggressive ‘scramblers.’ Because only fighters kill their rivals, they should incur a greater indirect fitness cost when competing with their relatives, and thus fighter expression could be reduced in the presence of relatives. We raised mites in full-sibling or mixed-sibship groups and found that fighters were more common at higher body weights in full-sibling groups, not less common as we predicted (small individuals were almost exclusively scramblers in both treatments). This result could be explained if relatedness and cue variability are interpreted signals of population density, since fighters are more common at low densities in this species. Alternatively, our results may indicate that males compete more intensely with relatives in this species. We provide the first evidence of kin-mediated plasticity in the expression of alternative reproductive tactics.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3