Hibernation telomere dynamics in a shifting climate: insights from wild greater horseshoe bats

Author:

Power Megan L.1ORCID,Ransome Roger D.2ORCID,Riquier Sébastien1ORCID,Romaine Luke2ORCID,Jones Gareth2ORCID,Teeling Emma C.1ORCID

Affiliation:

1. School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Republic of Ireland

2. School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK

Abstract

Hibernation is linked with various hypotheses to explain the extended lifespan of hibernating mammals compared with their non-hibernating counterparts. Studies on telomeres, markers of ageing and somatic maintenance, suggest telomere shortening slows during hibernation, and lengthening may reflect self-maintenance with favourable conditions. Bats in temperate zones adjust body temperatures during winter torpor to conserve energy and exploit mild conditions for foraging. Climate change may impact the hibernation cycle of bats, but more research is needed regarding the role of telomeres in understanding their response to a changing climate. Here, relative telomere length (rTL) was measured in the long-lived greater horseshoe batRhinolophus ferrumequinum(n= 223 individuals) over three winters, considering climatic conditions. Cross-sectional analyses revealed between-individual variation in rTL with a strong year effect, likely linked to varying weather conditions and foraging success. Additionally, within-individual increases of rTL occurred in 51% of consecutive measurements, with evidence of increasing telomerase expression during hibernation in this species. These findings highlight the beneficial effects of hibernation on telomeres and potential consequences of changing climatic conditions for long-lived temperate bats. Understanding the interplay between hibernation, telomeres, and climate can provide insights into the adaptive capacity and survival of bat populations facing environmental challenges.

Funder

Royal Irish Academy-Royal Society International Exchange Cost Share Programme

Science Foundation Ireland

Irish Research Council

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3